Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 11(7): e0005779, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28727723

RESUMEN

This study aimed to assess analytical parameters of a prototype LAMP kit that was designed for detection of Trypanosoma cruzi DNA in human blood. The prototype is based on the amplification of the highly repetitive satellite sequence of T.cruzi in microtubes containing dried reagents on the inside of the caps. The reaction is carried out at 65°C during 40 minutes. Calcein allows direct detection of amplified products with the naked eye. Inclusivity and selectivity were tested in purified DNA from Trypanosoma cruzi stocks belonging to the six discrete typing units (DTUs), in DNA from other protozoan parasites and in human DNA. Analytical sensitivity was estimated in serial dilutions of DNA samples from Sylvio X10 (Tc I) and CL Brener (Tc VI) stocks, as well as from EDTA-treated or heparinized blood samples spiked with known amounts of cultured epimastigotes (CL Brener). LAMP sensitivity was compared after DNA extraction using commercial fiberglass columns or after "Boil & Spin" rapid preparation. Moreover, the same DNA and EDTA-blood spiked samples were subjected to standardized qPCR based on the satellite DNA sequence for comparative purposes. A panel of peripheral blood specimens belonging to Chagas disease patients, including acute, congenital, chronic and reactivated cases (N = 23), as well as seronegative controls (N = 10) were evaluated by LAMP in comparison to qPCR. LAMP was able to amplify DNAs from T. cruzi stocks representative of the six DTUs, whereas it did not amplify DNAs from Leishmania sp, T. brucei sp, T. rangeli KPN+ and KPN-, P. falciparum and non-infected human DNA. Analytical sensitivity was 1x10-2 fg/µL of both CL Brener and Sylvio X10 DNAs, whereas qPCR detected up to 1x 10-1 fg/µL of CL Brener DNA and 1 fg/µl of Sylvio X10 DNA. LAMP detected 1x10-2 parasite equivalents/mL in spiked EDTA blood and 1x10-1 par.eq/mL in spiked heparinized blood using fiberglass columns for DNA extraction, whereas qPCR detected 1x10-2 par.eq./mL in EDTA blood. Boil & Spin extraction allowed detection of 1x10-2 par.eq /mL in spiked EDTA blood and 1 par.eq/ml in heparinized blood. LAMP was able to detect T.cruzi infection in peripheral blood samples collected from well-characterised seropositive patients, including acute, congenital, chronic and reactivated Chagas disease. To our knowledge, this is the first report of a prototype LAMP kit with appropriate analytical sensitivity for diagnosis of Chagas disease patients, and potentially useful for monitoring treatment response.


Asunto(s)
Enfermedad de Chagas/diagnóstico , ADN Protozoario/sangre , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Trypanosoma cruzi/aislamiento & purificación , Enfermedad de Chagas/parasitología , Femenino , Humanos , Recién Nacido , Masculino , Sensibilidad y Especificidad , Trypanosoma cruzi/genética
3.
Acta Trop ; 152: 8-16, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26272680

RESUMEN

Chagas disease is a major unsolved health issue in Latin America and an emerging threat worldwide. New drugs are urgently needed for chemotherapy as those available (benznidazole and nifurtimox) have variable efficacy and elevated toxicity. Efforts are actually oriented to improve tools and technologies (e.g. transgenic parasites, flow cytometry or image-based systems) for the screening of large numbers of candidate compounds for their activity against Trypanosoma cruzi (T. cruzi). Methods that test drug efficacy and selectivity in the same assay are suitable to accelerate the process of drug discovery. Here, we developed a GFP expressing T. cruzi from a moderate virulence stock and confirmed that the transgenic parasite retained the biological characteristics of the parental strain. With this tool, we established a flow cytometer-based method to simultaneously test drug activity against intracellular amastigotes and toxicity to the host cell. This one-step procedure allows determining the selectivity index of the tested compound in a sensitive and accurate manner even with low infection rates. This method can provide additional information on the interactions between drug, parasites and host cell and could be adapted to other trypanosomatids and protozoa with intracellular multiplication.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Descubrimiento de Drogas/métodos , Nifurtimox/uso terapéutico , Nitroimidazoles/uso terapéutico , Tripanocidas/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos , Citometría de Flujo , Humanos
4.
Int J Parasitol ; 44(7): 447-56, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24759431

RESUMEN

The identification of new targets for vaccine and drug development for the treatment of Chagas' disease is dependent on deepening our understanding of the parasite genome. Vectors for genetic manipulation in Trypanosoma cruzi basically include those that remain as circular episomes and those that integrate into the parasite's genome. Artificial chromosomes are alternative vectors to overcome problematic transgene expression often occurring with conventional vectors in this parasite. We have constructed a series of vectors named pTACs (Trypanosome Artificial Chromosomes), all of them carrying telomeric and subtelomeric sequences and genes conferring resistance to different selection drugs. In addition, one pTAC harbours a modified GFP gene (pTAC-gfp), and another one carries the ornithine decarboxilase gene from Crithidia fasciculata (pTAC-odc). We have encountered artificial chromosomes generated from pTACs in transformed T. cruzi epimastigotes for every version of the designed vectors. These extragenomic elements, in approximately 6-8 copies per cell, remained as linear episomes, contained telomeres and persisted after 150 and 60 generations with or without selection drugs, respectively. The linear molecules remained stable through the different T. cruzi developmental forms. Furthermore, derived artificial chromosomes from pTAC-odc could complement the auxotrophy of T. cruzi for polyamines. Our results show that pTACs constitute useful tools for reverse functional genetics in T. cruzi that will contribute to a better understanding of T. cruzi biology.


Asunto(s)
Clonación Molecular , Regulación de la Expresión Génica/fisiología , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Animales , Cromosomas Artificiales , Ratones , Organismos Modificados Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...